An MRI framework for respiratory motion modelling validation
نویسندگان
چکیده
منابع مشابه
Autoadaptive motion modelling for MR-based respiratory motion estimation
Respiratory motion poses significant challenges in image-guided interventions. In emerging treatments such as MR-guided HIFU or MR-guided radiotherapy, it may cause significant misalignments between interventional road maps obtained pre-procedure and the anatomy during the treatment, and may affect intra-procedural imaging such as MR-thermometry. Patient specific respiratory motion models provi...
متن کاملPrediction Framework for Statistical Respiratory Motion Modeling
Breathing motion complicates many image-guided interventions working on the thorax or upper abdomen. However, prior knowledge provided by a statistical breathing model, can reduce the uncertainties of organ location. In this paper, a prediction framework for statistical motion modeling is presented and different representations of the dynamic data for motion model building of the lungs are inve...
متن کاملan investigation about the appropriate stochastic modeling framework for agricultural insurance pricing
با توجه به اینکه بیمه محصولات کشاورزی در ایران بیشتر جنبه ای حمایتی دارد و خسارات گزارش شده عموما بیش از حق بیمه های دریافت شده است، در این پایان نامه به جهت تعیین قیمت بیمه محصولات کشاورزی (گندم دیم) از فرآیندهای نوفه شلیک به عنوان مدلی مناسب استفاده شده است. بر اساس داده های صندوق بیمه کشاورزی از خسارات اعلام شده در سال زراعی 1388-1389 گندم دیم، در این پایان نامه حق بیمه خالص و ناخالص این محص...
Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI
Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, ...
متن کاملAn Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors
Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Medical Imaging and Radiation Oncology
سال: 2021
ISSN: 1754-9477,1754-9485
DOI: 10.1111/1754-9485.13175